

Les différents programmes du GIS Sol : qu'avons-nous fait de nos 20 ans ?

A. Bispo, N.P.A. Saby, C. Jolivet, C. Ratié, C. Le Bas, A. Schellenberger, A.C. Richer-de-Forges, B. Laroche, D. Arrouays (Info&Sols, INRAE)

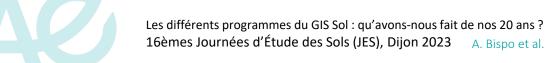
J.F. Brunet (BRGM)

A. Eymard et L. Commagnac (IGN)

INRAO

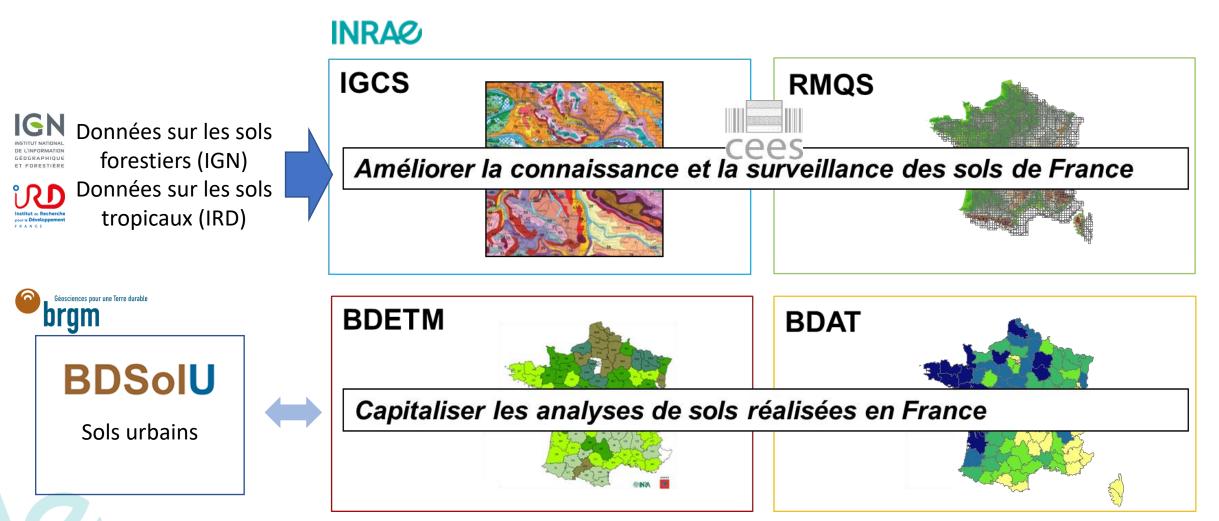
Objectifs:

- Acquisition et capitalisation des données sur les sols de France et l'évolution de leurs qualités
- Inventaire cartographique et surveillance des sols de France
- Calcul d'indicateurs, restitutions nationales
- Mise à disposition des données et contribution à l'expertise nationale/internationale
- En parallèle, création de l'unité de Service InfoSol (désormais Info&Sols) pour la coordination des programmes du Gis Sol



ANSES un partenaire-financeur

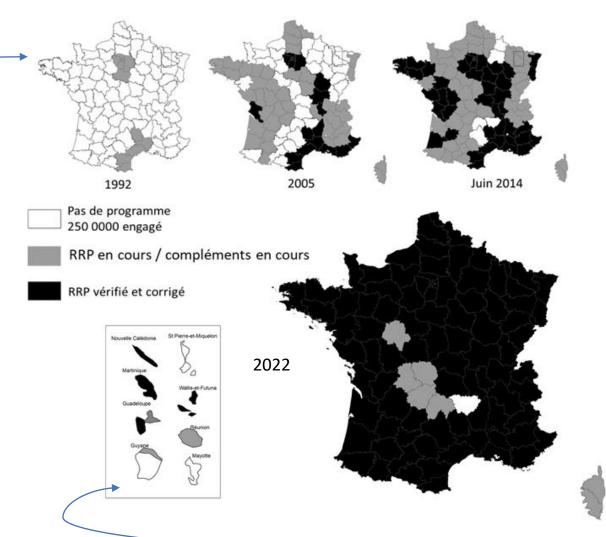
Rassembler progressivement tous les acteurs de l'acquisition de données sols pour construire un SI national sur les sols


INRAO

Les programmes du GIS Sol

> Cinq grands programmes du GIS Sol

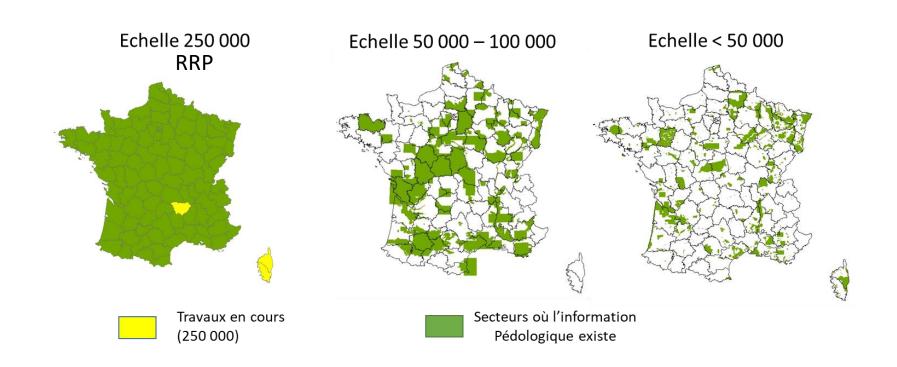
Des programmes d'inventaire/cartographie, de surveillance, de capitalisation des données



> Le programme IGCS : programme multi-échelle

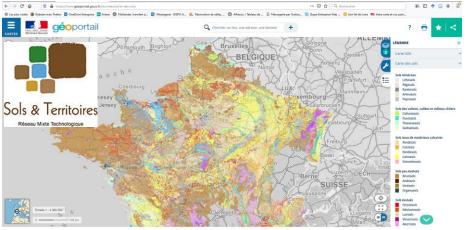
Une priorité donnée aux Référentiel Régionaux Pédologiques (RRP) au 1/250 000ème

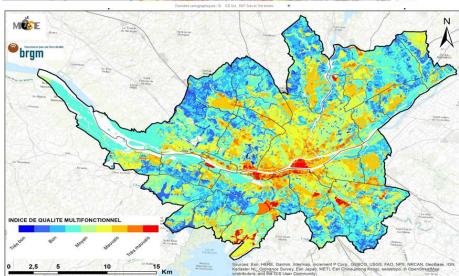
On ne partait pas de 0 !
Des travaux de cartographie
à différentes échelles
préexistaient et des
programmes nationaux
étaient déjà lancés !


La création du GIS Sol a structuré les travaux, centralisé les financements, priorisé les actions... et accéléré les RRP.

> Le programme IGCS : programme multi-échelle

Et les autres échelles?




Les autres échelles ont progressé mais il reste du travail pour couvrir la France !!!

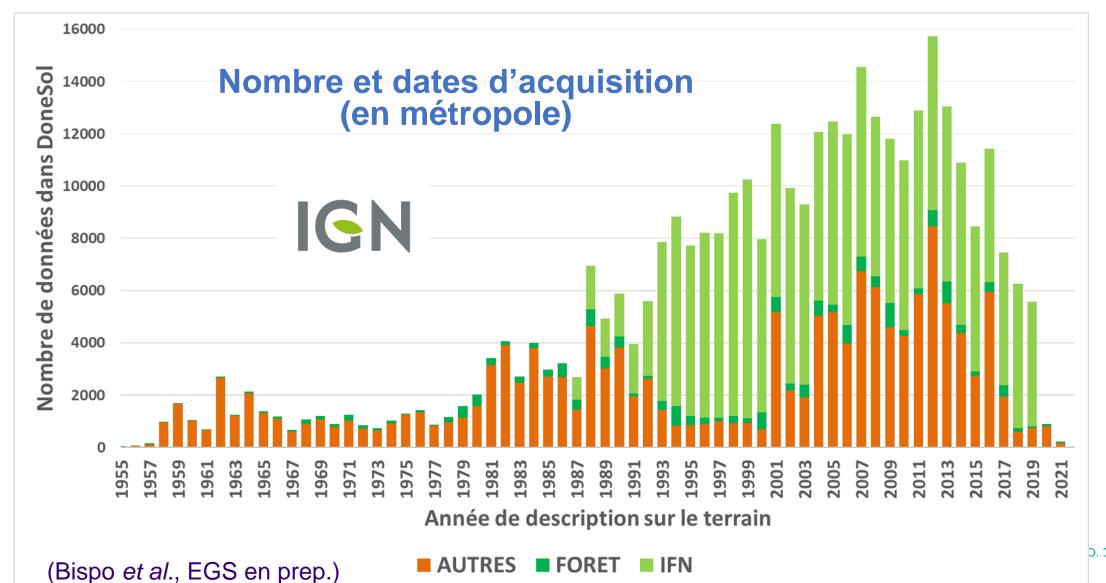
> Le programme IGCS : qques réalisations clés !

https://www.geoportail.gouv.fr/carte

https://www.gissol.fr/p ublications/lacartographie-des-solsen-france-etat-deslieux-et-perspectives-4629

Délimitation des zones soumises à des contraintes naturelles (ZSCN) et des zones soumises à des contraintes spécifiques (ZSCS) pour la France hexagonale à partir de 2019.

https://agriculture.gouv.fr/aides-auxexploitations-classement-en-zonedefavorisee


https://librairie.ademe.fr/urbanisme-et-batiment/5415-muse-integrer-la-multifonctionnalite-des-sols-dans-les-documents-d-urbanisme.html

Les différents programmes du GIS Sol : qu'avons-nous fait de nos 20 ans ? 16èmes Journées d'Étude des Sols (JES), Dijon 2023 A. Bispo et al.

Apport des sondages/déterminations en Forêt (IGN)

Des travaux en cours avec l'IGN

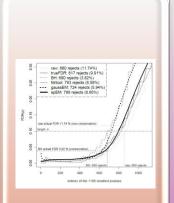
> Le programme BDAT : le principe

On ne partait pas de 0!

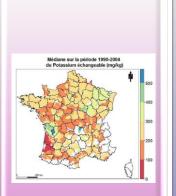
La création du GIS Sol a structuré les travaux, annualisé les financements, accru les collaborations avec les laboratoires.

Echantillonnage (en general en

surface 0-25 cm)


Analyse

Laboratoires certifiés par le ministère en charge de l'Agriculture


Consolidation des données

- Contrôle qualité
- Stockage
- Statistiques sommaires

Analyses statistiques (intégrant l'incertitude)

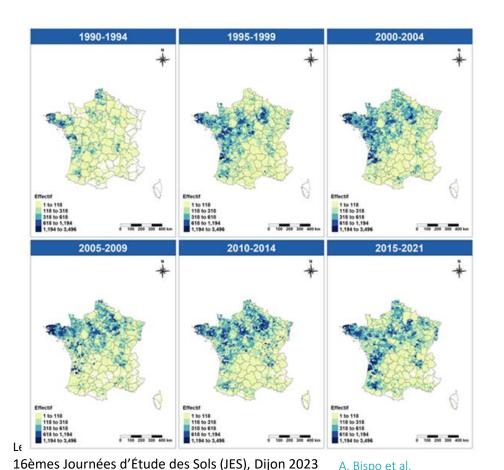
Publications

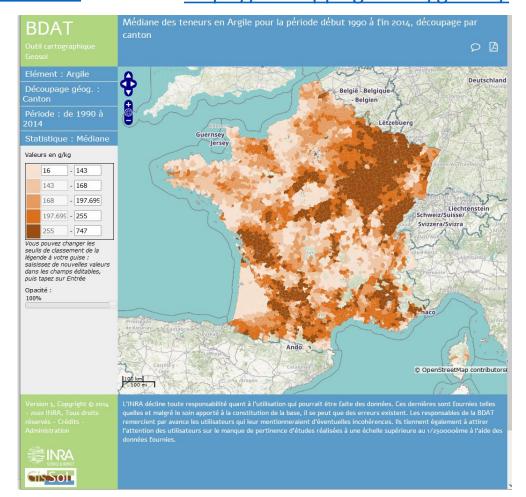
Cartographie spatiales et temporelles

Dissemination

6 étapes.. du terrain à la diffusion, en passant par les laboratoires !

Les di 16èm


> Le programme BDAT : qques réalisations



Des publications nombreuses:

- pH: Saby et al., 2017 https://doi.org/10.1111/sum.12369
- Carbone: Saby et al., 2014 https://hal.inrae.fr/hal-00948553v1
- Nutriments: P,K, and Mg Saby et al., 2016 https://hal.inrae.fr/hal-01209243v1

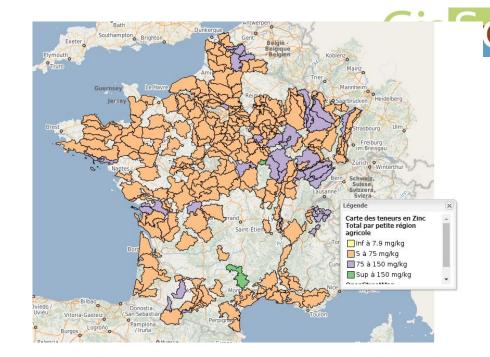
https://webapps.gissol.fr/geosol/

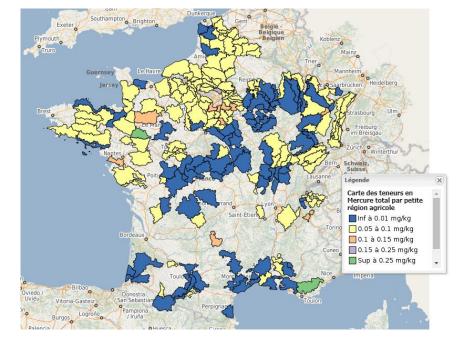
Le programme BDAT : une fierté

Cité dans la stratégie EU Soil 2030 **(SWD(2021) 323 final)**

To make it happen on the ground, and inspired by the French national soil sampling scheme BDAT ⁷⁷, a 'TEST YOUR SOIL FOR FREE' initiative is proposed below. Knowing more about soil characteristics (pH, bulk density, soil organic matter, nutrient balance, etc.) will help land users to adopt the best management practices. For that reason, building on years of experience surveying soils in the LUCAS survey, the Commission will assist Member States in setting up, with their own funds, a system to test soil for free for those land users that so wish, and who will receive the results of the tests. This will complement existing obligations in Member States for soil sampling. In order to maximise consistency in approaches to sampling techniques, and to ensure appropriate advice, the involvement of AKIS advisors is crucial. An estimate of the costs involved in such an initiative are included in the staff working document accompanying this strategy.

⁷³ FAO (2017), Voluntary Guidelines for Sustainable Soil Management.


⁷⁴ Gattinger A. et al (2012), Enhanced top soil carbon stocks under organic farming.

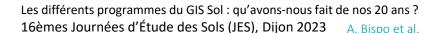

https://ec.europa.eu/info/food-farming-fisheries/key-policies/common-agricultural-policy/cap-glance_en - thenewcap
New EU Forest Strategy for 2030, COM(2021)572 final.

https://www.gissol.fr/le-gis/programmes/base-de-donnees-danalyses-des-terres-bdat-62

> BDETM

- On ne partait pas de 0... la base avait initialement été constituée par l'ADEME avec l'appui de l'INRA puis elle a été versée au GIS Sol
- Analyses réglementaires de sols (avant épandage des boues de STEP)
- Réalisées par les chambres d'agriculture, bureaux d'études, les sociétés de traitement des eaux... pour les plans d'épandage
- Récupération & exploitation des données
- Plus de **70 000 analyses** récupérées
- Nouvelle campagne en cours

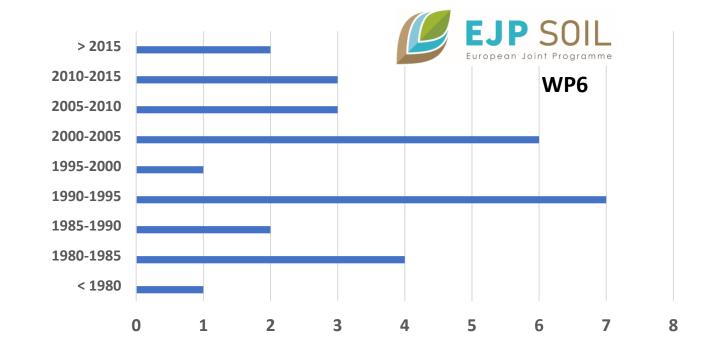
➤ BDSolU - BRGM


Depuis 2019 un tableau des données brutes est accessible pour les **25 000 premières analyses** bancarisées :

A B	C	D E	F	G	Н	I	J	K L	M N
ID ECH 📲 Région	Nom département	Département Commune	Prof. début prélèvement	Prof. fin prélèvement =	Famille de substance	Substance	Signe =	Résultat T Unité T	LQI 🕝 Caractéristiques du s
ECH0001 GRAND-EST	Bas-Rhin	67 SCHILTIGHEIM (67447)		0.05	Cyanures	Cyanures totaux	<	1 mg/kg_MS	1 Terre végétale
ECH0001 GRAND-EST	Bas-Rhin	67 SCHILTIGHEIM (67447)	0	0.05	HAP	Acénaphtène	<	0.05 mg/kg_MS	0.05 Terre végétale
ECH0001 GRAND-EST	Bas-Rhin	67 SCHILTIGHEIM (67447)		0.05	HAP	Acénaphtylène	<	0.05 mg/kg_MS	0.05 Terre végétale
ECH0001 GRAND-EST	Bas-Rhin	67 SCHILTIGHEIM (67447)	0	0.05	HAP	Anthracène	<	0.05 mg/kg_MS	0.05 Terre végétale
ECH0001 GRAND-EST	Bas-Rhin	67 SCHILTIGHEIM (67447)		0.05	HAP	Benzo(a)pyrène	=	0.14 mg/kg_MS	0.05 Terre végétale
ECH0001 GRAND-EST	Bas-Rhin	67 SCHILTIGHEIM (67447)	(0.05	HAP	Benzo(b)fluoranthène	=	0.15 mg/kg_MS	0.05 Terre végétale
CH0001 GRAND-EST	Bas-Rhin	67 SCHILTIGHEIM (67447)		0.05	HAP	Benzo(g,h,i)pérylène	=	0.13 mg/kg_MS	0.05 Terre végétale
CH0001 GRAND-EST	Bas-Rhin	67 SCHILTIGHEIM (67447)	(0.05	HAP	Benzo(k)fluoranthène	=	0.079 mg/kg_MS	0.05 Terre végétale
ECH0001 GRAND-EST	Bas-Rhin	67 SCHILTIGHEIM (67447)	(0.05	HAP	Benzoanthracène	=	0.11 mg/kg_MS	0.05 Terre végétale
CH0001 GRAND-EST	Bas-Rhin	67 SCHILTIGHEIM (67447)	(0.05	HAP	Chrysène	=	0.11 mg/kg_MS	0.05 Terre végétale
CH0001 GRAND-EST	Bas-Rhin	67 SCHILTIGHEIM (67447)	(0.05	HAP	Dibenzo(a,h)anthracène	<	0.05 mg/kg_MS	0.05 Terre végétale
CH0001 GRAND-EST	Bas-Rhin	67 SCHILTIGHEIM (67447)	(0.05	HAP	Fluoranthène	=	0.17 mg/kg_MS	0.05 Terre végétale
CH0001 GRAND-EST	Bas-Rhin	67 SCHILTIGHEIM (67447)	(0.05	HAP	Fluorène	<	0.05 mg/kg_MS	0.05 Terre végétale
CH0001 GRAND-EST	Bas-Rhin	67 SCHILTIGHEIM (67447)	(0.05	HAP	Indéno(1,2,3-c,d)pyrène	=	0.13 mg/kg_MS	0.05 Terre végétale
CH0001 GRAND-EST	Bas-Rhin	67 SCHILTIGHEIM (67447)	(0.05	HAP	Naphtalène	<	0.05 mg/kg MS	0.05 Terre végétale
CH0001 GRAND-EST	Bas-Rhin	67 SCHILTIGHEIM (67447)	(0.05	HAP	Phénanthrène	<	0.05 mg/kg_MS	0.05 Terre végétale
CH0001 GRAND-EST	Bas-Rhin	67 SCHILTIGHEIM (67447)	(0.05	HAP	Pyrène	=	0.17 mg/kg MS	0.05 Terre végétale
CH0001 GRAND-EST	Bas-Rhin	67 SCHILTIGHEIM (67447)	(0.05	HAP	Somme HAP	=	1.2 mg/kg_MS	Terre végétale
CH0001 GRAND-EST	Bas-Rhin	67 SCHILTIGHEIM (67447)	(0.05	Hydrocarbures Aliphatiques TPHW	EC>C10-C12	<	10 mg/kg MS	10 Terre végétale
CH0001 GRAND-EST	Bas-Rhin	67 SCHILTIGHEIM (67447)	(0.05	Hydrocarbures Aliphatiques TPHW	EC>C12-C16	<	10 mg/kg_MS	10 Terre végétale
CH0001 GRAND-EST	Bas-Rhin	67 SCHILTIGHEIM (67447)		0.05	Hydrocarbures Aliphatiques TPHW	EC>C5-C6	<	10 mg/kg_MS	10 Terre végétale
CH0001 GRAND-EST	Bas-Rhin	67 SCHILTIGHEIM (67447)		0.05	Hydrocarbures Aliphatiques TPHW	EC>C6-C8	<	10 mg/kg MS	10 Terre végétale
CH0001 GRAND-EST	Bas-Rhin	67 SCHILTIGHEIM (67447)		0.05	Hydrocarbures Aliphatiques TPHW	EC>C8-C10	<	10 mg/kg_MS	10 Terre végétale
CH0001 GRAND-EST	Bas-Rhin	67 SCHILTIGHEIM (67447)		0.05	Hydrocarbures Aromatiques TPHW	EC>C10-C12	=	75 mg/kg MS	10 Terre végétale
CH0001 GRAND-EST	Bas-Rhin	67 SCHILTIGHEIM (67447)		0.05	Hydrocarbures Aromatiques TPHW	EC>C12-C16	=	64 mg/kg_MS	10 Terre végétale
CH0001 GRAND-EST	Bas-Rhin	67 SCHILTIGHEIM (67447)			Hydrocarbures Aromatiques TPHW	EC>C6-C7	<	10 mg/kg MS	10 Terre végétale
CH0001 GRAND-EST	Bas-Rhin	67 SCHILTIGHEIM (67447)		0.05	Hydrocarbures Aromatiques TPHW	EC>C7-C8	<	10 mg/kg_MS	10 Terre végétale
CH0001 GRAND-EST	Bas-Rhin	67 SCHILTIGHEIM (67447)			Hydrocarbures Aromatiques TPHW	EC>C8-C10	<	10 mg/kg_MS	10 Terre végétale
CH0001 GRAND-EST	Bas-Rhin	67 SCHILTIGHEIM (67447)		0.05	Mesure Physique	% Matières sèches (MS)	=	87.1 %MB	0.01 Terre végétale
CH0001 GRAND-EST	Bas-Rhin	67 SCHILTIGHEIM (67447)			Métaux-Métalloïdes	Arsenic	=	12 mg/kg MS	1 Terre végétale
CH0001 GRAND-EST	Bas-Rhin	67 SCHILTIGHEIM (67447)		0.05	Métaux-Métalloïdes	Cadmium	=	0.46 mg/kg_MS	0.1 Terre végétale
CH0001 GRAND-EST	Bas-Rhin	67 SCHILTIGHEIM (67447)		0.05	Métaux-Métalloïdes	Chrome Total	=	36 mg/kg MS	0.2 Terre végétale
CH0001 GRAND-EST	Bas-Rhin	67 SCHILTIGHEIM (67447)			Métaux-Métalloïdes	Cuivre	-	25 mg/kg_MS	0.2 Terre végétale
CH0001 GRAND-EST	Bas-Rhin	67 SCHILTIGHEIM (67447)			Métaux-Métalloïdes	Mercure total	<	0.05 mg/kg_MS	0.05 Terre végétale
CH0001 GRAND-EST	Bas-Rhin	67 SCHILTIGHEIM (67447)			Métaux-Métalloïdes	Nickel	=	25 mg/kg_MS	0.5 Terre végétale
CH0001 GRAND-EST	Bas-Rhin	67 SCHILTIGHEIM (67447)			Métaux-Métalloïdes	Plomb	=	23 mg/kg_MS	0.5 Terre végétale
CH0001 GRAND-EST	Bas-Rhin	67 SCHILTIGHEIM (67447)			Métaux-Métalloïdes	Zinc	=	55 mg/kg MS	1 Terre végétale
CH0001 GRAND-EST	Bas-Rhin	67 SCHILTIGHEIM (67447)			PCB indicateurs	n°101	<	0.002 mg/kg_MS	
CH0001 GRAND-EST	Bas-Rhin	67 SCHILTIGHEIM (67447)			PCB indicateurs	n°118	<	0.002 mg/kg MS	0.002 Terre végétale
CH0001 GRAND-EST	Bas-Rhin	67 SCHILTIGHEIM (67447)		0.03	PCB indicateurs	n°138	<	0.002 mg/kg_MS	0.002 Terre végétale
CH0001 GRAND-EST		67 SCHILTIGHEIM (67447)			PCB indicateurs	n°153	<		0.002 Terre végétale

En mai 2023 la bancarisation a progressé :

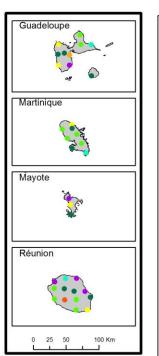
1 758 sites, 3 070 sondages, 4 060 échantillons, 162 832 analyses http://www.bdsolu.fr

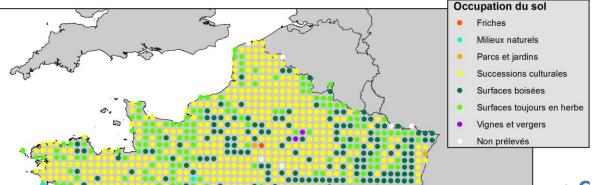


> La surveillance des sols

En 2000... pas de surveillance nationale!

- Il existait un réseau de sites expérimentaux (OQS)
- Développement de modes opératoires
- Pas assez de sites pour représenter le territoire national
- Retard français...




#nbre de réseaux de surveillance

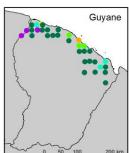
Le programme RMQS (Réseau de Mesures de la Qualité des Sols) : une campagne d'échantillonnage tous les 15 ans

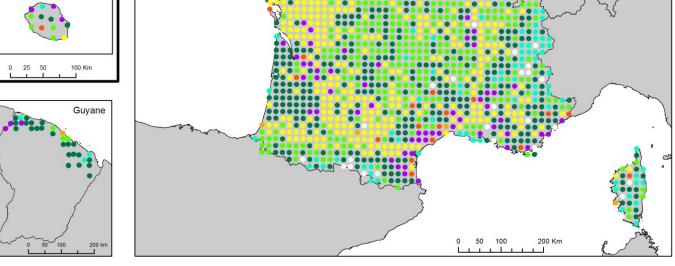
RMQS1: 2000-2015

RMQS2: 2016-2030

Trois thématiques principales

• Carbone, eau et changement climatique


- Stocks de carbone de surface et profonds (RMQS2), qualité des matières organiques
- Réservoir en eau utilisable (RMQS2)


Contaminants et santé

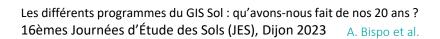
- Éléments traces : As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Pb, Tl, Zn . Radionucléides (IRSN)
- Micropolluants organiques: HAP, PCB, dioxines, furanes, OCP, herbicides
- En test : phytopharmacovigilance (ANSES)

Biodiversité

- Richesse et diversité microbienne
- Activités enzymatiques (RMQS2)
- En test : faune du sol et fonge (OFB)

Les différents programmes du GIS Sol : qu'avons-nous fait de nos 20 ans ? 16èmes Journées d'Étude des Sols (JES), Dijon 2023

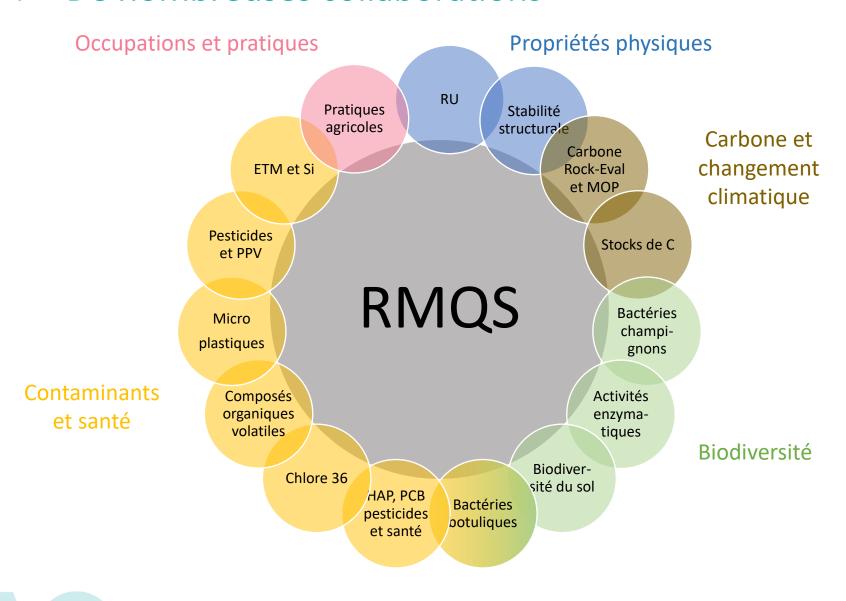
Un conservatoire des échantillons de sols



Conditions climatiques contrôlées

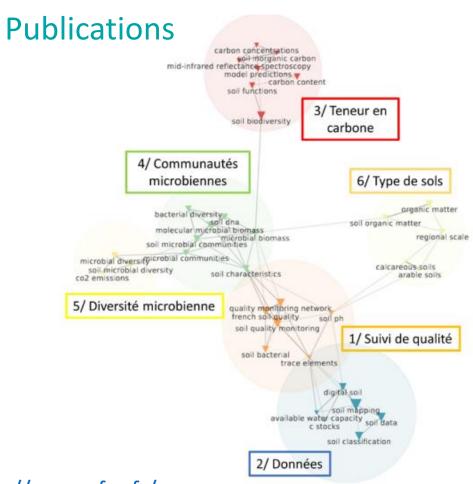
Plus de 75 000 échantillons stockés

Environ 10-15 demandes d'accès aux échantillons / an


150 à 200 visiteurs / an

https://fb.watch/8A2opYE4Sa/
https://www.youtube.com/watch?v=qcHkAt8zSIU

> De nombreuses collaborations

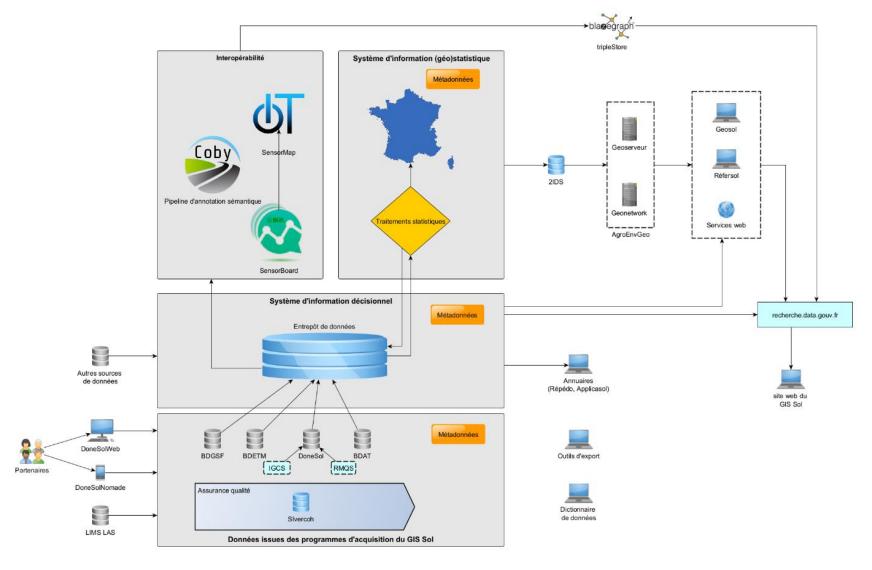


RMQS et réseaux européens de surveillance des sols

https://www.afes.fr/wpcontent/uploads/2023/06/EGS 2023 30 Mason 307-322.pdf

Références nationales

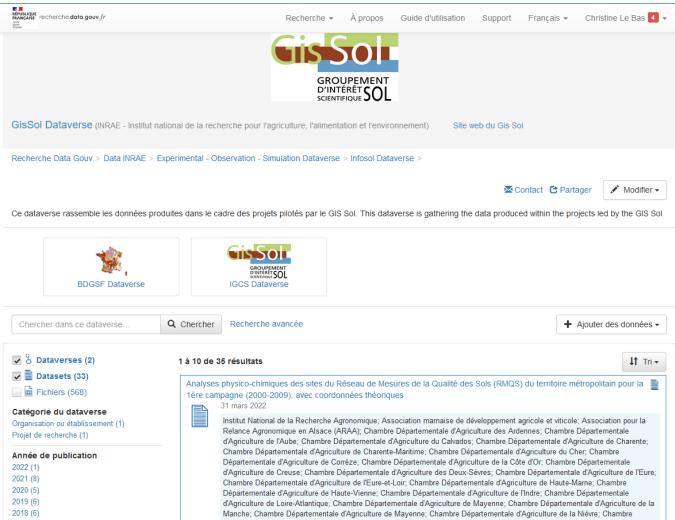
- Stocks de C (IPCC)
- Fond pédo-géochimique (SSP)
- Observatoire biodiversité (SNB)



INRAO

> Le Système d'Information national sur les sols

L'infrastructure de données spatialisées INRAE : agroenvgeo

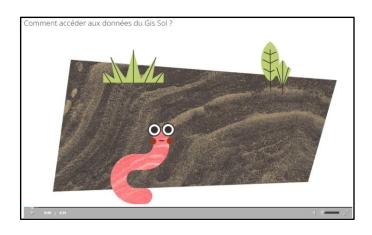

https://agroenvgeo.data.inra.fr

Le dataverse GISSOL

Gis Sol

https://entrepot.recherche.data.gouv.fr/dataverse/gissol

																				Antonio E	BISPO 🗷
lise en pag	ge Formu	ules D	Données	Révision	n Affichage	Aide Ç	Dites-nous	ce que vous vou	ulez faire												
partir d'un		-G	onnexions	Actualise	Propriétés	s et connexions És	Ž↓ Z A Z I Trier	T Ya R	Effacer Réappliquer	Conver		Same Supprim	ner Validation		r Relations Gér	rer le modèle	Analyse F		per Dissocier S	Masq	her le détail quer le détail
ou d'une			existantes	tout -		les liaisons	AJ	V 4	Avancé			tané les doubl				de données		révision *		total	
former des					Requêtes et conr	nexions		Trier et filtrer					Outils de do				Prévisio			Plan	
f _× id	d_site																				
С	D	Е		F	G	Н	1	J	K		L	М	N	0	P	Q	R	S	T	U	V
complec	code_dept	site_off	fficiel x_th	heo	y_theo	type_profil_	no_couche	profondeur	profonde	ur_ten	aur_eau_r	argile	limon_fin	limon_gross	sable_fin	sable_gros	ssi cec_40_1	ca_ech_40	_3 k_ech_40_3	3 mg_ech_40	_ na_ech_4
9/2002	59	9 True	652	2326.99	7101219.71	C	1	1 (J	23 20.9	j.	247	122	131	1 479	9 7	21 17.35	16.25	0.610	0.839	0.089
9/2002	59	9 True	652	2326.99	7101219.71	C	7	2 29	9	50 17.0	j	312	184	128	3 370)	6 17.35	17.42	0.460	0.575	0.120
9/2002	59	9 True	668	3319.25	7101085.53	C	1	1 (J	27 15.9	,	186	134	232	2 442	2	6 14.30	13.89	0.570	0.49	0.060
9/2002	59	9 True	668	3319.25	7101085.53	C	7	2 31	1	50 28.0	j	333	261	256	5 147	7	3 19.15	18.41	0.490	0.89	0.137
7/2003	62	2 True	604	1216.81	7085629.01	C	1		J	30 31.3	,	313	166	195	5 271	t 5	55 24.43	23.43	0.400	2.483	0.150
7/2003		2 True			7085629.01		2			50 38.0		444					41 24.01	21.90	0.520	2.762	0.233
9/2003		2 True	620		7085495.39		1	-		30 13.3		160					12 11.04	11.95	0.390	0.231	0.063
9/2003		2 True			7085495.39			2 33		50 15.0		208					3 11.96	12.28	0.340	0.281	0.085
19/2003		2 True			7085361.59		1			29 15.3		188					21 11.97	11.11	0.590	0.767	0.080
19/2003		2 True			7085361.59		2	-		50 17.0		204					15 13.74	12.70	0.230	0.714	0.111
.0/2002		9 True			7085227.59		1		-	25 15.7		176					32 13.18	12.43	0.470	1.002	0.155
.0/2002		9 True			7085227.59			2 29		50 11.0		177					24 10.04	7.78	0.180	0.691	0.064
.0/2002		9 True			7085093.38		1		-	24 23.5		215					48 20.21	18.31	0.690	1.246	0.111
.0/2002		9 True			7085093.38			2 29		50 14.0		223					44 14.71	11.50	0.320	1.626	0.174
6/2003		2 True			7069637.17		1			30 28.4		345					37 20.42	19.31	0.240	1.432	0.132
6/2003		2 True			7069637.17		2		-	50 25.0		351					40 17.59	16.13	0.250	1.154	0.116
15/2003		2 True			7069503.54		1	-		30 37.3		350					57 22.32	20.17	0.580	2.495	0.142
15/2003		2 True			7069503.54			2 30		50 35.0		371					68 21.41	18.71	0.440	2.199	0.130
2/2003		2 True			7069369.71		1	-		29 18.9		207					19 13.27	13.46	0.570	0.329	0.101
2/2003		2 True			7069369.71			2 32		50 28.0		250					26 13.34	12.86	0.270	0.304	0.068
2/2003		2 True			7069235.66		1			30 13.5		151					25 10.25	10.24	0.510	0.69	0.034
2/2003		2 True			7069235.66		2			50 19.0		190					10 9.71	9.25	0.340	0.523	0.073
8/2002		9 True			7069101.41		1	-		19 55.3		415					32 29.13	27.39	0.330	2.05	0.127
18/2002		9 True			7069101.41			2 22		50 61.0		407					32 29.81	28.12	0.150	2.19	0.146
14/2003		9 True			7068966.98		1	-		26 30.4		312					33 19.84	18.02	0.630	1.388	0.069
4/2003		9 True			7068966.98			2 29		50 35.0		320					33 19.18	17.37	0.280	1.21	0.105
9/2002		9 True			7068832.42		1			30 13.7		124					19 10.07	9.63	0.310	0.47	0.041
19/2002		9 True			7068832.42			2 40	-	50 15.0		130					12 9.62	9.00	0.110	0.40	0.053
7/2003		2 True			7053645.56		1			28 11.5		293					02 10.42	11.67	0.480	0.33	0.083
15/2003		2 True			7053511.92		1		-	30 23.1		296					51 20.78	21.36	0.690	0.705	0.066
5/2003	62	2 True	619	9941.32	7053511.92	C	7	2 30	J	50 20.0	j	300	262	281	108	3 4	49 16.22	17.24	0.480	0.409	0.057


https://doi.org/10.15454/QSXKGA

https://www.gissol.fr

- Un portail national d'accès qui oriente (portail en cours de refonte)
- Vidéo disponible sur l'accès aux données <u>https://www.gissol.fr/donnees/webservices/comment-acceder-aux-donnees-du-gis-sol-5097</u>

INRAO

> Les ambitions initiales de la première convention

• Fédérer les **efforts d'observation des sols et de leur qualité**, pour répondre à la demande d'informations dans les domaines de **l'environnement et de l'agriculture**.

• Une attention particulière devait être apportée au développement des réseaux de collecte des données sur le sol et à la **diffusion des informations** associées.

- Les missions essentielles dévolues au GIS Sol sont de :
 - stimuler et développer des **réseaux de mesure** de propriétés des sols et notamment de leur qualité ;
 - prendre en charge, sur le long terme, l'administration des données et des programmes ;
 - surveiller et alerter sur l'état des sols ;
 - diffuser de l'information sur le sol;
 - former/sensibiliser à l'usage des données sur le sol ;

- collecter et/ou gérer des informations concernant les pressions sur le sol;
- conserver des échantillons de sol.

> Les défis identifiés au démarrage

- Les missions devaient prendre en compte différents défis comme :
 - les **mutations technologiques** à l'œuvre au début des années 2000 (technologies de l'information avec la généralisation de l'informatique et des approches (géo)statistiques, systèmes de gestion de base de données, systèmes d'information géographique, techniques d'acquisition nouvelles comme la télédétection, la géophysique, les modèles numériques de terrain, les systèmes de géolocalisation...)

• le **statut juridique des données**, parfois très hétérogène, en fonction des régions, qui complique la consolidation nationale des bases de données et leur mise à disposition, et

• la continuité du savoir-faire (la plupart des personnels impliqués dans les programmes de cartographie prenaient ou allaient prendre leur retraite).

> Les 20 ans à venir ?

Poursuivre

- La cartographie des sols : finir les RRP et se lancer sur de nouvelles échelles
- Les Bases de données (BDETM, BDAT, BDSolU) existantes
- Surveillance des sols (RMQS) et intégration EU

Amplifier l'effort

- Nouvelles données à acquérir (biodiversité, contaminants organiques...)
- Sols de forêt en lien avec l'IGN et d'autres (ex : ONF, CNPF)
- Sciences participatives

Capitaliser

- Les études et données existantes... tout le monde est concerné!
- Développer des cahiers des charges pour appuyer les acteurs territoriaux
- Injection en masse de données

Diffuser les données

- Régler la question de la propriété des données
- Favoriser/faciliter l'utilisation des données
- Mise en ligne des données et des cartes

> Pour finir

- Le GIS Sol a remplit ses objectifs!
- Un outil assez exceptionnel (unique en UE)
- L'aventure n'a été possible que grâce aux
 - Financeurs du GIS Sol (2 Ministères, ADEME, OFB) et autres (ex : ANSES)
 - Membres du GIS Sol (IGN, IRD, BRGM)
 - Partenaires régionaux des programmes IGCS et RMQS
 - Laboratoires associés à la BDAT
 - Bureaux d'études, agences de l'eau, chambres d'agriculture sur la BDETM, BDSolU...
 - Discussions diverses et variées avec de nombreux collègues (ex : le RMT S&T, RNEST, AFES, CES "Cartographie Numérique des Sols" Theia, les experts de la biodiversité des sols..)
 - ... Equipes (surmotivées) d'Orléans
- Le travail est loin d'être fini!
- Il faut rester ambitieux pour la suite, ne pas faiblir!
- On a jamais eu autant besoin de données/d'information sur les sols!

Une adresse générique (<u>infosol@inrae.fr</u>)

Seuls on va plus vite, ensemble on va plus loin...